The History of Java Technology

Domains: Java


Java was started as a project called "Oak" by James Gosling in June 1991. Gosling's goals were to implement a virtual machine and a language that had a familiar C-like notation but with greater uniformity and simplicity than C/C++. The first public implementation was Java 1.0 in 1995. It made the promise of "Write Once, Run Anywhere", with free runtimes on popular platforms. It was fairly secure and its security was configurable, allowing for network and file access to be limited. The major web browsers soon incorporated it into their standard configurations in a secure "applet" configuration. popular quickly. New versions for large and small platforms (J2EE and J2ME) soon were designed with the advent of "Java 2". Sun has not announced any plans for a "Java 3".

In 1997, Sun approached the ISO/IEC JTC1 standards body and later the Ecma International to formalize Java, but it soon withdrew from the process. Java remains a proprietary de facto standard that is controlled through the Java Community Process. Sun makes most of its Java implementations available without charge, with revenue being generated by specialized products such as the Java Enterprise System. Sun distinguishes between its Software Development Kit (SDK) and Runtime Environment (JRE) which is a subset of the SDK, the primary distinction being that in the JRE the compiler is not present.


There were five primary goals in the creation of the Java language:

1. It should use the object-oriented programming methodology.
2. It should allow the same program to be executed on multiple operating systems.
3. It should contain built-in support for using computer networks.
4. It should be designed to execute code from remote sources securely.
5. It should be easy to use by selecting what was considered the good parts of other object-oriented languages.

To achieve the goals of networking support and remote code execution, Java programmers sometimes find it necessary to use extensions such as CORBA, Internet Communications Engine, or OSGi.

Object orientation

The first characteristic, object orientation ("OO"), refers to a method of programming and language design. Although there are many interpretations of OO, one primary distinguishing idea is to design software so that the various types of data it manipulates are combined together with their relevant operations. Thus, data and code are combined into entities called objects. An object can be thought of as a self-contained bundle of behavior (code) and state (data). The principle is to separate the things that change from the things that stay the same; often, a change to some data structure requires a corresponding change to the code that operates on that data, or vice versa. This separation into coherent objects provides a more stable foundation for a software system's design. The intent is to make large software projects easier to manage, thus improving quality and reducing the number of failed projects.

Another primary goal of OO programming is to develop more generic objects so that software can become more reusable between projects. A generic "customer" object, for example, should have roughly the same basic set of behaviors between different software projects, especially when these projects overlap on some fundamental level as they often do in large organizations. In this sense, software objects can hopefully be seen more as pluggable components, helping the software industry build projects largely from existing and well-tested pieces, thus leading to a massive reduction in development times. Software reusability has met with mixed practical results, with two main difficulties: the design of truly generic objects is poorly understood, and a methodology for broad communication of reuse opportunities is lacking. Some open source communities want to help ease the reuse problem, by providing authors with ways to disseminate information about generally reusable objects and object libraries.

Platform independence

The second characteristic, platform independence, means that programs written in the Java language must run similarly on diverse hardware. One should be able to write a program once and run it anywhere.

This is achieved by most Java compilers by compiling the Java language code "halfway" to bytecode (specifically Java bytecode)—simplified machine instructions specific to the Java platform. The code is then run on a virtual machine (VM), a program written in native code on the host hardware that interprets and executes generic Java bytecode. Further, standardized libraries are provided to allow access to features of the host machines (such as graphics, threading and networking) in unified ways. Note that, although there's an explicit compiling stage, at some point, the Java bytecode is interpreted or converted to native machine instructions by the JIT compiler.

There are also implementations of Java compilers that compile to native object code, such as GCJ, removing the intermediate bytecode stage, but the output of these compilers can only be run on a single architecture.

Sun's license for Java insists that all implementations be "compatible". This resulted in a legal dispute with Microsoft after Sun claimed that the Microsoft implementation did not support the RMI and JNI interfaces and had added platform-specific features of their own. In response, Microsoft no longer ships Java with Windows, and in recent versions of Windows, Internet Explorer cannot support Java applets without a third-party plug-in. However, Sun and others have made available Java run-time systems at no cost for those and other versions of Windows.

The first implementations of the language used an interpreted virtual machine to achieve portability. These implementations produced programs that ran more slowly than programs compiled to native executables, for instance written in C or C++, so the language suffered a reputation for poor performance. More recent JVM implementations produce programs that run significantly faster than before, using multiple techniques.

The first technique is to simply compile directly into native code like a more traditional compiler, skipping bytecodes entirely. This achieves good performance, but at the expense of portability. Another technique, known as just-in-time compilation (JIT), translates the Java bytecodes into native code at the time that the program is run which results in a program that executes faster than interpreted code but also incurs compilation overhead during execution. More sophisticated VMs use dynamic recompilation, in which the VM can analyze the behavior of the running program and selectively recompile and optimize critical parts of the program. Dynamic recompilation can achieve optimizations superior to static compilation because the dynamic compiler can base optimizations on knowledge about the runtime environment and the set of loaded classes. JIT compilation and dynamic recompilation allow Java programs to take advantage of the speed of native code without losing portability.

Portability is a technically difficult goal to achieve, and Java's success at that goal has been mixed. Although it is indeed possible to write programs for the Java platform that behave consistently across many host platforms, the large number of available platforms with small errors or inconsistencies led some to parody Sun's "Write once, run anywhere" slogan as "Write once, debug everywhere".

Platform-independent Java is however very successful with server-side applications, such as Web services, servlets, and Enterprise JavaBeans, as well as with Embedded systems based on OSGi, using Embedded Java environments.

Similar pages

Page structure